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Abstract

Inferring climate from paleodata frequently assumes a direct, linear relationship be-
tween the two, which is seldom met in practice. Here we simulate an idealized proxy
characterized by a nonlinear, thresholded relationship with surface temperature, and
demonstrate the pitfalls of ignoring nonlinearities in the proxy–climate relationship. We5

explore three approaches to using this idealized proxy to infer past climate: (i) methods
commonly used in the paleoclimate literature, without consideration of nonlinearities,
(ii) the same methods, after empirically transforming the data to normality to account
for nonlinearities, (iii) using a Bayesian model to invert the mechanistic relationship be-
tween the climate and the proxy. We find that neglecting nonlinearity often exaggerates10

changes in climate variability between different time intervals, and leads to reconstruc-
tions with poorly quantified uncertainties. In contrast, explicit recognition of the non-
linear relationship, using either a mechanistic model or an empirical transform, yields
significantly better estimates of past climate variations, with more accurate uncertainty
quantification. We apply these insights to two paleoclimate settings. Accounting for15

nonlinearities in the classical sedimentary record from Laguna Pallcacocha leads to
quantitative departures from the results of the original study, and markedly affects the
detection of variance changes over time. A comparison with the Lake Challa record,
also a nonlinear proxy for El Niño–Southern Oscillation, illustrates how inter-proxy com-
parisons may be altered when accounting for nonlinearity. The results hold implications20

for how nonlinear recorders of normally distributed climate variables are interpreted,
compared to other proxy records, and incorporated into multiproxy reconstructions.

1 Introduction

A principal goal of paleoclimatology is to infer climate information from geochemical,
physical or lithological signals embedded in various proxy archives. Implicit in most25

analyses of paleoclimate records is the assumption that the observations are linearly
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related to the target climate quantity, so that traditional calibration approaches (e.g.
Brown, 1994) allow to infer climate given the proxy values.

The climate system, in contrast, is ripe with nonlinearities, as are the processes
translating climate signals into proxy records (see e.g. Evans et al., 2013, for a review).
Examples of nonlinear processes known to markedly distort climate signals include:5

biological threshold effects on tree growth (Vaganov et al., 2006; Anchukaitis et al.,
2006; Tolwinski-Ward et al., 2011), karst effects in speleothem δ18O records (Baker
et al., 2012; Jex et al., 2013), and hydrodynamic effects in flood proxies. Nonlinearities
are especially pronounced in terrestrial proxy records from the tropics, where tempera-
ture experiences its lowest dynamic range and precipitation its highest dynamic range,10

resulting in distributions that are non-normal, with strong positive skew. These records
are frequently interpreted as reflecting some aspect of the El Niño–Southern Oscilla-
tion (ENSO) phenomenon, involving either hydrological balance (Conroy et al., 2008,
2009), river runoff (Rodbell et al., 1999; Moy et al., 2002; Rein et al., 2004, 2005), or
wind speed (Wolff et al., 2011) – all nonlinear functions of ENSO state. These prox-15

ies can feature statistical distributions that are different from that of the climate phe-
nomenon they purport to record, and different from one another. What is the conse-
quence of inferring changes in ENSO state from such land-based, nonlinear records?
More generally, do nonlinear proxies allow for reliable statements about changes in
climate variability, and if so, under which conditions? Can nonlinearity be overcome to20

correctly infer changes in the underlying climate?
Nonlinearities often manifest themselves as non-normality in the proxy distribution,

despite the target climate quantity being well approximated by a normal distribution.
This is because a normally-distributed proxy is only expected if the proxy is a linear
recorder of a normally-distributed climate variable, as the linear transform of a Gaus-25

sian random vector is also Gaussian. Temperature fluctuations, especially if averaged
over a month or more, typically obey normal statistics, so linear temperature proxies are
also normal. In contrast, tropical runoff proxies, for instance, are nonlinearly related to
land precipitation, hence to sea-surface temperature. Such records are not amenable
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to analysis using common techniques assuming linearity and normality (e.g. spectral
analysis, principal component analysis, least squares regression methods, correlation
analysis, and parametric hypothesis testing).

One strategy to overcome this difficulty is to use generalized linear models (GLMs;
e.g. McCullagh and Nelder, 1989; Lindsey, 1997) that enable linear inference meth-5

ods despite nonlinear relationships between predictors and predictands. Such meth-
ods require the specification of the functional relationship between proxy and climate,
which may not always be known. Even if these link functions are known, GLMs re-
quire a case-by-case treatment, each proxy potentially displaying a different relation to
climate. Such a case-specific treatment can become prohibitive in multiproxy studies,10

which range from graphical comparisons of a half-dozen records in a stack to assess
the synchronous nature of climate fluctuations (e.g. Conroy et al., 2008, Fig. 5, or Kirby
et al., 2014, Fig. 5) to using several hundreds of proxies to reconstruct temperature
over the Late Holocene using statistical models (e.g. Mann et al., 1998, 2008, 2009;
Luterbacher et al., 2004; Moberg et al., 2005; Kaufman et al., 2009; Barriopedro et al.,15

2011; Emile-Geay et al., 2013a, b; Tingley and Huybers, 2013). In such cases, it would
be desirable to account for nonlinearity so that nonlinear proxies may be used along-
side linear proxies without recourse to individual treatment.

This article draws attention to the pitfalls of ignoring nonlinearity in the proxy–climate
relationship, and explores a number of approaches to using nonlinear proxies to infer20

climate variability. Our objective is not to consider all of the vagaries of fitting a straight
line through noisy data, including calibration vs. regression; measurement errors in
predictor variables; and various regularization techniques. For in-depth discussions of
these issues, relevant and complementary to the problem at hand, see Brown (1994)
and Christiansen (2014). Here we focus on the related challenge of inferring climate25

variability from proxy archives that are nonlinear recorders of the target climate variable.
We consider both simple, generic strategies that are amenable to multi-proxy studies,
as well as more case-specific treatments.
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Section 2 presents a simple toy model for a nonlinear proxy, used to illustrate the
effects of nonlinearity on inferences about climate variability. Section 3 outlines various
practical solutions to the problem, which we then apply to the Laguna Pallcacocha and
Lake Challa records in Sect. 4. Section 5 provides discussion and concluding remarks.

2 Nonlinearity in climate proxies5

2.1 A simple proxy model

To illustrate the challenges posed by non-linear recorders of climate, we consider an
idealized model for a runoff proxy that displays a stationary but nonlinear response
to ENSO-induced rainfall. Sediment-based runoff proxy are expected to feature non-
linearities for at least four reasons: sediment mobilization is a nonlinear function of10

flow speed (Rose, 1993); flow speed is a nonlinear function of rainfall (e.g. Maidment,
1993); rainfall is a nonlinear function of sea-surface temperature (e.g. Lengaigne and
Vecchi, 2010); finally, we assume that rainfall at the location of the proxy occurs only
during the warm phase of ENSO, inducing an asymmetric relationship with climate.

To characterize ENSO state, we use December–January–February averages of the15

NINO3.4 index (average sea-surface temperature anomaly in the region [5◦N–5◦ S;
170–120◦W]) from the ERSSTv3 dataset (Smith et al., 2008). Although NINO3.4 statis-
tics are well-known to be skewed at monthly scales, the seasonal averaging results
in a nearly Gaussian distribution, so that for this example non-normality in the proxy
arises on account of the proxy–climate relationship rather than the underlying climate.20

To add stochasticity, we assume that the idealized land-based proxy is sensitive to the
local expression of NINO3.4 via c′(t) = c(t)+ε1(t), where c(t) is the NINO3.4 index,
c′(t) the local expression of ENSO variability, and for convenience ε1 is a zero-mean
Gaussian white noise process with variance δ2. An additive noise ε2, in the proxy units,
represents measurement error. Our idealized model for the runoff proxy then takes the25
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form,

p(t) :=

{
α[c(t)+ε1(t)]β +ε2(t) c′(t) ≥ 0

ε2(t) otherwise
(1)

where α > 0 and β > 1. The exact value of β is relatively unimportant in the context
of our example; in the following, we choose α = 1 and β = 3, though our results are
qualitatively insensitive to this choice.5

As we expect the error introduced by the local vs. global ENSO signal to be much
larger, we neglect measurement error in the remainder for the sake of simplicity of
exposition. We also ignore chronological errors, though they would be important in na-
ture. This example may be viewed as a best-case scenario: it is the most parsimonious
representation of the fact that the ENSO signal is global but experienced locally by the10

proxy, with deviations controlled by δ.
A proxy generated according to Eq. (1) selectively records El Niño events, and does

so with great sensitivity – in this respect it is an ideal proxy. Figure 1 shows the NINO3.4
index and a pseudo-proxy series derived from it using Eq. (1). It is qualitatively similar to
runoff proxy records commonly interpreted as reflecting ENSO variability (e.g. Rodbell15

et al., 1999; Moy et al., 2002; Rein et al., 2004). The pseudo-proxy correctly identifies
maxima in the target NINO3.4 index, but exaggerates their relative magnitudes, while
the minima in the target series are clipped at zero. Analysis of this skewed pseudo-
proxy will thus lead to correct conclusions regarding the timing of positive excursions
in the NINO3.4 index, but the nonlinearity and thresholding can potentially result in20

overestimates of changes in ENSO variability. Quantitatively, the ratio of the NINO3.4
sample variances between the 1950–1999 period and the 1900–1949 period is 1.25,
while the distribution of variance ratios for 10 000 realizations of the pseudo-proxy,
differing in their noise alone, is peaked at higher values (Fig. 3), with a median of
5.25 and interquartile range (Wilks, 2011, p26) of 6.20. Indeed, the variance ratio for25

86% of the realizations of p(t) is more than 50 % higher than that calculated from the
original NINO3.4 series, indicating the large impact of the nonlinear transform (Eq. 1)
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on the second moment properties of the proxy as compared with the climate. Note that
this assessment considered positive values of the proxies only, but results are nearly
identical without this restriction.

2.2 Coping with nonlinearity

Our aim is to explore the quantitative information about climate variability that can5

reliably be inferred from a proxy record generated according to Eq. (1), and to explore
the pitfalls of failing to account for the nonlinear relationship with climate. A full review
of all existing inference strategies in the presence of nonlinearity and non-normality is
beyond the scope of this paper; instead, we focus on three workable approaches that
may be useful in paleoclimatology.10

– Functional transformation: when the transfer function between proxy and climate
is known a priori, it may be leveraged to infer climate. Indeed, in the absence of
noise, Eq. (1) expresses a one-to-one mapping between proxy values and local
climate when the latter displays positive excursions. This relationship over positive
values is therefore invertible, and may be used for inference, for instance by spec-15

ifying this relationship as a link function within a GLM (Nelder and Wedderburn,
1972). Linear regression can then be used to perform inference on climate given
the proxy in a manner that accounts for nonlinearities. However, as all negative
excursions are mapped to zero, the GLM framework cannot be used over such
points. A related approach is to embed the mechanistic model describing how20

climate signals are recorded in the proxy archives within a hierarchical model.
Under some circumstances, such models may be inverted using Bayes’ rule to
yield quantitative information about the underlying climate (e.g. Tolwinski-Ward
et al., 2011, 2013). This is similar in spirit to the GLM framework, as both ex-
ploit the functional relationship between proxy and climate. A limitation common25

to both frameworks is that the parametric from of the proxy–climate relationship
must be known, which may not be the case in practice.
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One important difference between the two approaches concerns the choice of
dependent vs. independent variable. Under the GLM framework, there is ambigu-
ity in the set up of the model, as the goal is to infer climate from proxies but the
proxies are best understood as the dependent variable. Bayes’ rule, in contrast,
naturally inverts the etiologically correct specification of climate as the dependent5

variable to infer climate conditional on the proxies (Brown, 1994; Tingley et al.,
2012; Christiansen, 2014).

– Empirical transformation: when a parametric relationship is not known a priori, or
when parameter estimation is unreliable, empirical transforms offer a useful alter-
native. For example, the well-established power transforms (Box and Cox, 1964)10

render non-normal time series approximately normal, but the estimation of their
exponents can be unstable in the presence of noise (Bickel and Doksum, 1981).
An alternative is afforded by inverse transform sampling (ITS, e.g. van Albada and
Robinson, 2007), a robust approach for converting any distribution to a standard
normal. The transform in this case proceeds by evaluating the inverse normal15

cumulative distribution at the percentiles of the observations according to the fit-
ted cumulative distribution function; the resulting values are the approximately
normally distributed. Because it is quantile-based, this method is less sensitive to
outliers than power transforms. It is also non-parametric, hence more widely appli-
cable. We note that the widely used standardized precipitation index (SPI, McKee20

et al., 1993, 1995), often used to characterize drought conditions, is nothing but
an ITS assuming a gamma distribution for precipitation measurements.

We now apply those approaches to better understand past ENSO variability as de-
picted by nonlinear proxies.

2.3 Application to variance changes25

In the absence of information on the proxy-climate link, ITS is computationally simple,
non-parametric, and allows the transformed time series to be analyzed using classical
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tools. Figure 2 shows the result of applying this transform to a pseudo-proxy record
generated according to Eq. (1). The amplitude of positive excursions in the transformed
series is now comparable to the original NINO3.4 series and in repeated experiments,
the distribution of variance ratios between the early and late twentieth century (Fig. 3) is
centered at 1.5, much closer to the true value of 1.25, and the interquartile range is now5

reduced to 0.75 (compare with 5.25 and 6.20, respectively, using the raw proxy values).
Similarly, the probability of overstating the true change in variance by more than 50 %
is only 22 % (vs. 86 % using the raw proxy values). Similar results are obtained by
inverting Eq. (1), showing that application of the correct transform can effectively correct
for nonlinearity.10

However, while the transform adequately corrects for the cubic nonlinearity, it can-
not overcome the fundamental limitation that this idealized proxy only records El Niño
events, while information about La Niña events is irretrievably lost. Proxies generated
according to Eq. (1) thus represent a lossy transformation of the underlying climate
signal, one that no amount of statistical ingenuity can ever rectify. A good probabilistic15

analysis should nonetheless yield reasonable estimates of positive climate excursions,
and accurate error bounds for all climate excursions.

3 Inference from nonlinear proxies: three approaches

We compare the relative merits of three approaches to reconstructing past climate from
a proxy generated according to Eq. (1), given a calibration period when both climate20

and proxy observations are available. The problem is more general than the estimation
of variance changes considered above, since it seeks to estimate climate values, and
quantify the associated uncertainties. We note that the problem of statistical calibration
of noisy predictors has received extensive attention in the statistical (e.g. Brown, 1994)
and climate (e.g. Christiansen, 2014, and references therein) literature. Our goal is25

neither to present an exhaustive list of possibilities, nor to re-invent the wheel, but rather
to investigate some choice practical methods that may be of use to paleoclimatologists.
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3.1 Three approaches to inference

– Method 1 (RAW): nonlinearity is ignored, and the proxy series p(t) is used as
a predictor in a standard linear regression (an assumption implicit to many paleo-
climate studies).

– Method 2 (ITS): nonlinearity is recognized, empirically corrected via inverse trans-5

form sampling (van Albada and Robinson, 2007), and used as a predictor in
a standard linear regression.

– Method 3 (BPM): nonlinearity is recognized, and a probability model that allows
for Bayesian inversion of the structural dependence of the proxy on the climate
(Eq. 1) is constructed. The model, described extensively in Appendix A, is used10

to infer the posterior distribution of climate values given proxy observations, f (c|p).

These three cases involve increasing levels of sophistication, but do not attempt to
cover all possible choices. Instead, our purpose here is to illustrate the danger of ignor-
ing nonlinearity (RAW), outline an optimal (but difficult) solution (BPM), and a practical
compromise between the two (ITS).15

The experimental sample is composed of 10 000 surrogate climate time series c(t)
of length n = 300 years generated according to an AR(1) process, with mean zero and
a lag-1 autocorrelation of γ = 0.7 to mimic the serial correlation typical of observed
sea-surface temperature time series; conclusions are not sensitive to this choice. The
innovation standard deviation, σo, is chosen so that the standard deviation of c(t) is20

unity. We add ε1 ∼ N(0,δ), with δ = 0.5×σ, to produce c′(t), and the idealized proxy
series is then generated according to Eq. (1), with α = 1 and β = 3.

In the RAW and ITS cases, inference is made via linear regression, where the re-
gression model is trained on a calibration interval formed from the most recent 150
time points. To minimize erroneous inference when p = 0, the regression model is fit25

using only proxy observations that are greater than zero. We adopt a heuristic ap-
proach to the p(t) = 0 observations in the prediction interval, assigning to them the
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value c−, the calibration sample mean of c(t) calculated over time points for which
p(t) = 0. While somewhat unorthodox in the regression context, the divergent treat-
ments in the p = 0 and p > 0 cases is a reasonable ad hoc procedure warranted by
the thresholding behavior of the proxy. For the two regression cases, uncertainties are
quantified via 95 % prediction intervals (PIs) following standard regression theory (e.g.5

Wilks, 2011, Eq. 7.22), where the variance of residuals is again computed separately
for p = 0 and p > 0. In the Bayesian model, the posterior mean serves as the optimal
prediction of c(t), and 95 % credible intervals (Jaynes, 1976; Gelman et al., 2004) are
readily obtained from the posterior samples.

For simplicity, we assume in the Bayesian treatment that all model parameters10

(α,β,µ,σ,δ) are known. Doing so permits for closed-from expressions for the required
posterior distributions that aid the interpretation of results. In practical applications
these parameters would be inferred from the data as well, via a hierarchical model
and Markov Chain – Monte Carlo – based inference (e.g. Gelman et al., 2004). By
constructing the Bayesian model to match the proxy-generating process, in both struc-15

ture and parameter values, we give it an unfair advantage over the other methods. We
use this best-case scenario as a benchmark, expected to provide the best estimates of
climate given the skewed proxy measurements, as well as reliable estimates of uncer-
tainty. Appendix B explores the role played by the prior specification of the variance of
the climate process, σ2.20

3.2 Results

Results of performing inference on c(t) using each of the three approaches are plotted
in Fig. 4 for one realization of the climate and noise processes. The raw regression
overestimates positive excursions (cf. time points 110 to 130), while in contrast the
amplitudes of positive excursions as inferred from the regression on the transformed25

proxies and using the Bayesian inversion of the mechanistic model are in reasonable
agreement with c(t). The raw regression could thus exaggerate any changes in cli-
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mate variability prior to the calibration period, a direct consequence of linearizing the
nonlinear climate–proxy relationship.

We investigate the properties of the three inference methods, and the sensitivity
of the results to the ratio δ/σ, using residual plots (Fig. 5). For small noise levels
(δ = 0.1σ), and for p > 0, there is most structure in the residual plot for the RAW5

method, and least for the BPM, indicating that the RAW and BPM approaches provide,
respectively, the poorest and best fits to the data. The curvature of the residual plot
for p > 0 is positive for the RAW regression, as the nonlinearity magnifies large excur-
sions. In contrast, the residual plot for the ITS regression displays negative curvature,
indicating that the transform overly compresses large excursions and overly magnifies10

small ones. In the least noisy case (δ = 0.1σ), the Bayesian model yields near-perfect
estimates for p > 0, while for p = 0 the distribution of residuals is similar for all three
methods. As the noise level increases (middle and bottom rows), the residual plots
become less structured, and the vertical spread in each case becomes comparable to
that of the p = 0 case. For higher noise levels, there are large positive outliers in the15

residuals from the RAW proxy regression, as expected since the method makes no ac-
count of the nonlinearity. In contrast, the ITS regression and Bayesian inversion yield
generally smaller residuals even for high noise levels.

We further investigate the diagnostic features of the inference procedures using the
10 000-member ensemble of realizations of the climate and noise processes for the20

intermediate noise level δ = 0.5σ (Table 1). To quantify the properties of the uncertainty
intervals, we first evaluate their width, considering both the p = 0 and p > 0 cases for
each inference method (top row). All three methods show larger uncertainties in the
p = 0 case (around 2.7 ◦C) with small differences between methods, consistent with
the lack of information offered by the proxy in this regime. When p > 0, uncertainties25

are reduced for all methods, as expected from the information provided by the proxy.
The raw proxy regression results in the widest uncertainty intervals while those from
the Bayesian inversion are narrowest.
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To see how well such intervals encompass the true climate fluctuations, we calculate
their actual coverage rates (Guttman, 1970), to be compared with a nominal coverage
rate of 95 % (Table 1, rows 3–4). For the two regression approaches, the uncertainties
are slightly too permissive in both cases, with actual coverage rates of about 94 %. The
coverage rate for the mechanistic model is correct for the p = 0 case, but only about5

90% when p > 0. In contrast to RAW and ITS, the mechanistic model does not involve
two separate calibrations and solutions for the p = 0 and p > 0 cases. As such, the
coverage rates are more appropriately assessed without division into the two cases,
yielding PIs with a coverage rate of 93 with a standard error of ±2 %, compatible with
the nominal rate of 95 %.10

While coverage rates can always be increased by widening PIs, a useful probabilis-
tic model should yield predictions that are both sharp and on point. A complementary
view comes from the interval score (Gneiting and Raftery, 2007, Eq. 43), which bal-
ances coverage with sharpness. That is, the score rewards the narrowest intervals that
encompass the true values at the nominal rate (here, 95 %) and should be as small as15

possible. Computed scores (Table 1, rows 5–6) are lowest for the BPM, whose slightly
permissive coverage is more than compensated by smaller widths; the scores are also
the least variable for this method. At the opposite end, the raw regression displays the
largest and most variable scores, while the ITS regression displays scores much closer
to the BPM, and with comparable variability, particularly when data speak (p > 0).20

The bias in the mean is quite small for all methods (rows 7–8), but is slightly more
variable for the two regression methods (raw and transformed) than for the Bayesian
model. The bias in the Bayesian inference for p > 0 results from the balance between
the erfc term in Eq. (A4) giving greater weight to more positive values, and the infor-
mative prior shrinking the posterior mean towards the prior mean (Eq. A5); given the25

particular parameters, the erfc terms has a stronger effect and there is a slight pos-
itive bias. More appropriately, assessing the Bayesian inference jointly for the p = 0
and p > 0 cases results in a bias that is not inconsistent with zero (0.05 with standard
error 0.08). Changing the prior sharpness for the climate process has competing ef-

2775

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/11/2763/2015/cpd-11-2763-2015-print.pdf
http://www.clim-past-discuss.net/11/2763/2015/cpd-11-2763-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
11, 2763–2809, 2015

Climate variability
from nonlinear

proxies

J. Emile-Geay and
M. P. Tingley

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

fects on the bias (and other diagnostics) in the p = 0 and p > 0 cases; these issues are
investigated further in Appendix B.

Finally we summarize how closely each method estimates the variance ratio between
the calibration (t > 151) and validation (t ≤ 150) intervals (Table 1, rows 9–10). We
calculate the ratio of sample variances between the two periods for each of 10 0005

inferences of c(t) using each method. We restrict our attention to the case where p > 0,
as when p = 0 each method estimates c(t) by a constant value and the variance of
the corresponding climate cannot be estimated. To remove the effect of differences in
sample variances calculated over the two intervals for realizations of the actual climate
c(t), we divide the ratio inferred from each pseudo proxy by the ratio calculated from10

the corresponding realization of c(t).
An ideal estimator of past climate should therefore result in a distribution of normal-

ized variance ratios that is tightly distributed about unity, and indeed we find this to
be the case for regression on the transformed proxies and for the Bayesian inversion
(Fig. 6, blue and green curves; Table 1). In contrast, regression on the raw proxies re-15

sults in a much broader distribution, peaked at about 0.4, with a much heavier upper
tail (Fig. 6, cyan curve; Table 1). More tellingly, regression on the raw proxies results
in a normalized variance ratio in excess of 1.5 in 29 % of experiments, more than four
times as frequently as for the other two methods (Table 1, last row): in other words,
regression on the raw proxies ups the risk of overestimating changes in variability by20

a factor of four as compared to the other methods.
Taken together, the results of our numerical experiments lead to a number of gen-

eral observations about the potential pitfalls of ignoring non-linearity in proxies, as well
as the strengths and weaknesses of potential solutions. A failure to account for strong
non-linearity in a proxy often presents itself in structured residuals (Fig. 5), and incurs25

a high risk of overstating changes in climate variability (Table 1, last row). Since pa-
leoclimate proxies are almost never considered in isolation, but (rightfully so), often
stacked against comparable records, it is necessary that all proxies be approximately
linearly related before interpreting discrepancies between records. This caveat is es-
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pecially applicable to multiproxy analyses, as a climate reconstruction based on linear
regression that includes such nonlinear proxy predictors would inherit the same po-
tential pitfalls, though they may be attenuated by the presence of other sources of
information.

Applying ITS to the nonlinear proxy record prior to regression analysis results in5

a much better fit according to the residual plots, as well as more faithful estimates
of changes in variance. Such a transformed proxy series will thus be less likely to
lead to spurious conclusions about past climate variability if included in a multi-proxy
reconstruction or a proxy intercomparison.

An important shortcoming of the regression methods used here is that inference10

is generally limited to a best-estimate of past climates and an uncertainty interval,
whereas the Bayesian framework naturally provides the full distribution of climate con-
ditional on the proxy observations (for further discussion see Tingley et al., 2012).
However, we note that the excellent performance of the Bayesian inversion in all nu-
merical experiments performed here is to be expected given that the inference model15

is constructed using the correct mechanistic model and parameter values. In practical
applications, the parametric form of the mechanistic model would likely not be an exact
representation of the data-generating mechanism, while the parameters themselves
would need to be estimated from the data. This can be computationally demanding
when no closed-form solution exists for the posterior distribution of model parameters20

(as in this case) and would naturally broaden the posterior distributions, i.e. lead to
more uncertainties about the reconstructed climate.

4 Applications to published records

4.1 Laguna Pallcacocha

We now investigate how inferences made from the iconic Laguna Pallcacocha record25

of river runoff from the southern Ecuadorian Andes (Moy et al., 2002) are affected
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by different considerations of nonlinearity. The primary variable of interest here is the
red color intensity of the sediment, which is controlled by sediment delivery to the
lake. Episodes of alluvial deposition are hypothesized to occur predominantly during
El Niño events (Rodbell et al., 1999), similar to our idealized proxy (Sect. 2). Our in-
tent here is not to dispute qualitative conclusions made from the Laguna Pallcacocha5

record – they turn out to be robust across the analyses we consider – but to show how
nonlinearity may affect the quantitative inference made from such a proxy, and we view
the analysis primarily as an illustrative example.

The timeseries of Pallcacocha red color intensity displays pronounced positive skew
(Fig. 7a), closely following a generalized extreme value distribution (GEV, Fig. 7b).10

In contrast, the distribution of December–January–February averages of NINO3 val-
ues is fairly close to a Gaussian, so using Pallcacocha red color record to infer
changes in ENSO variability requires inferring a normally distributed climate variable
from a strongly non-normal proxy time series – as per the experiments in Sects. 2 and
3. Fitting a mechanistic model would necessitate determining both its structural form15

and parameters, so for simplicity we explore the consequences of an empirical trans-
form (ITS). By design, applying the transform to the empirical distribution produces
a nearly Gaussian series (Fig. 7d).

We investigate how the transform affects the time series of sample variances com-
puted on disjoint, 100 year segments (Fig. 8). While the 100 year variance time series20

calculated from the raw series suggests an abrupt increase in ENSO-related variance
at about 5000 yearsBP (gray dashed line), the series calculated from transformed val-
ues displays a more gradual increase. To establish if either or both series record signif-
icant increases in variance around 5000 yearsBP, we compute the variance ratio be-
tween two segments delineated by the gray line (centered at 3150 BCE), with lengths25

that vary between 200 and 3600 years. A window length of 200 years, for instance,
means that we compare variances over the period 3350–3151 and 3150–2951 BCE. As
the statistic of interest is a variance ratio, results are unchanged under linear transfor-
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mation of the series: while accounting for the non-linearity is necessary for meaningful
inference, calibrating to climate units is not.

On account of the non-normal and serially-correlated nature of both series, a stan-
dard F test for the significance of the observed variance ratio is not appropriate. In-
stead, we assess the significance of the variance ratio for each series via a block5

bootstrap resampling plan (Efron and Tibshirani, 1993; Kunsch, 1989), using a block
length of 25 years (Table 2). That is, we randomly sample with replacement the orig-
inal timeseries in 25 year blocks, compare variances before and after the year 3150,
and do so N = 2000 times to obtain a null distribution, smoothed by kernel averaging
(e.g. Wilks, 2011, Chapter 4). The P value for each observed ratio (the probability of10

observing a ratio at least as large as that observed from chance alone) is then es-
timated from the bootstrap-derived null distributions. The results (Table 2) show two
salient features: firstly, the variance ratio is generally larger with the raw than with the
transformed series, as would be expected from Sects. 2 and 3. Secondly, the variance
ratio estimated from the raw series is deemed significant at the 5 % level for all segment15

lengths, while the transformed series requires segment lengths of at least 1000 years
to make this conclusion. Hence, with the raw series one would detect a significant shift
at the boundary in a matter of 200 years, while using the power-transformed series this
transition would be seen to occur much more gradually, taking at least 1000 years to
become manifest. We note that the change in variance is largely driven by the record’s20

accumulation rate (Rodó and Rodriguez-Arias, 2004), so we refrain from interpreting
this aspect of the record.

Following Moy et al. (2002), we next apply Morlet wavelet analysis (Torrence and
Compo, 1998), modified to account for energy conservation (Liu et al., 2007), to both
the raw and transformed series. Results are qualitatively similar in both cases (Fig. 9):25

interannual variability is muted prior to the mid-Holocene, while millennial and cen-
tennial variability is relatively persistent. However, the two wavelet transforms differ in
detail, in particular regarding which “islands” of multidecadal power are significant with
respect to a red noise benchmark (Torrence and Compo, 1998). In the latter 5000 years

2779

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/11/2763/2015/cpd-11-2763-2015-print.pdf
http://www.clim-past-discuss.net/11/2763/2015/cpd-11-2763-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
11, 2763–2809, 2015

Climate variability
from nonlinear

proxies

J. Emile-Geay and
M. P. Tingley

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

of the record, high-frequency variability appears more consistently significant with the
empirical transform than without, indicating that the mid-Holocene shift for high fre-
quency variance is more consistently significant under the transform, even though the
shift in total variance appears less substantial.

Our analysis does not contradict the qualitative conclusions of the original study by5

Moy et al. (2002). Indeed, the transformed series also suggests that ENSO events
“become more frequent over the Holocene until about 1200 years ago, and then de-
cline towards the present” (Moy et al., 2002). Wavelet analysis accounting for energy
conservation (Liu et al., 2007) also suggests a statistically-significant modulation in
the 2000 year range, though it is nearly equal in amplitude to a ∼ 500-year broadband10

peak, and lies mostly within the cone of influence. Nonetheless, results of the statistical
analyses are markedly changed from a quantitative standpoint when nonlinearity is rec-
ognized and the proxy series transformed to approximate normality. Applying classical
estimators to the raw series may lead to erroneous conclusions about the magnitude
of changes in the variability of the underlying climate, as well as their localization in15

frequency space. The empirical transform counterbalances the nonlinearities inherent
to runoff proxies such as the Pallcacocha red color intensity record, and the resulting
transformed series is nearly normal and more likely to have an approximately linear re-
lationship with climate (cf. the numerical examples of Sects. 2 and 3). One is therefore
able to interpret changes in variability estimated from the transformed proxy record as20

indicating changes in climate variability (cf. Fig. 6).

4.2 Lake Challa

Recently, Wolff et al. (2011) used varved thickness at Lake Challa (equatorial East
Africa) to retrace changes in ENSO activity since the Last Glacial Maximum. The proxy
is interpreted as follows: El Niño (La Niña) events are associated with wetter (drier)25

conditions in East Africa and decreased (increased) surface wind speeds, which drive
turbulent mixing in the lake, thereby bringing nutrients to the surface and boosting pri-
mary productivity. Thicker varves are therefore indicative of La Niña conditions; thinner
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varves of El Niño conditions, resulting in a large anti correlation (r = −0.48) between
varve thickness and NINO3.4 SST (Wolff et al., 2011). The raw varve thickness data are
plotted in Fig. 10a for the past 3000 years. The histogram is highly skewed and closely
fits a log-normal distribution with parameters (µ,σ) = (0.33,0.31) (Fig. 10b). The trans-
formed series (Fig. 10c) closely follows a standard normal distribution (Fig. 10d).5

As the raw Lake Challa series has been used as a proxy for ENSO activity (Emile-
Geay et al., 2013a, b), it is worth asking how much it resembles the Lake Pallaca-
cocha red color intensity. Figure 11 plots the two time series, as well as their standard
deviations on sliding 40-year windows, before and after transforming each record to
normality. While Fig. 11c shows a fair amount of structure in each timeseries (peaks10

near 500 BCE and 2000 CE in Lake Challa varve thickness variability, quasi-periodic
modulations of red color intensity variability with an approximate recurrence time of
300 years), the transformed series (Fig. 11d) show different features: variability in red
color intensity now displays more pronounced Late Holocene excursions than its un-
transformed counterpart, while variations in varve thickness now appear to recur at15

centennial, rather than millennial, scales.
This illustrative comparison is necessarily limited, as the proxies are located at ei-

ther end of the Indo-Pacific system, and are sensitive to different aspects of tropical
Pacific SST (Challa responds more to central Pacific anomalies; Pallcacocha more to
variability along the Peruvian coast, though see Rodbell et al., 2008, for a non-climatic20

interpretation), which are not simply related to each other. In addition, the Pallcacocha
sensitivity to SST is highly nonlinear, as noted before, as is the Challa relationship:
Wolff et al. (2011) note that “the varve thickness record is particularly sensitive to La
Niña conditions and shows some evidence for saturation during El Niño years”. The
main message is that the visual impression changes with the application of the trans-25

forms. Given that each proxy is non normal due to a nonlinear relationships with nor-
mally distributed SSTs, there is a strong rationale for comparing the transformed rather
than the untransformed series.
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5 Discussion

Much of paleoclimatology is concerned with the characterization of climate variability
in the pre-instrumental era. Many proxy archives exhibit nonlinear relationships to the
underlying climate, whereas many commonly used tools assume, either explicitly or
implicitly, that the proxies are linearly related to a normally distributed climate variable.5

As illustrated for an idealized proxy (Sects. 2 and 3), and for ENSO-sensitive proxies
(Sect. 4), direct variance estimates on different segments of nonlinear proxy records
generally give a misleading picture of climate variability.

There are a number of techniques that allow for meaningful conclusions about
changes in the underlying climate from such non-linear proxy archives. Applying an em-10

pirical transform to such a series can render it approximately normal, so that standard
data-analytic tools may be applied. In the context of the pseudo-proxy study (Sect. 2),
the inverse transform sampling approach corrected for nonlinearity and reduced the
risk of overstating variance changes. In the context of inferring climate values from
proxy values (Sect. 3), the transform provided a regression fit comparable to that of15

an optimal benchmark, and led to normally distributed residuals, in accordance with
the assumptions of the regression framework. These examples also highlighted the
dangers of ignoring nonlinearity in the proxy–climate relationship.

Applying the transform to the Lake Pallcacocha record (Sect. 4.1) allows conclusions
from a wavelet analysis and estimates of changes in variance to be interpreted in terms20

of climate, even without explicit knowledge of the mechanism responsible for the non-
linearity. Transformation allows for classical tools to be correctly applied to the analysis
of paleoclimate records, and are a simpler approach than specifying and fitting a mech-
anistically informed statistical model. Transformation to normality may thus be seen as
a pragmatic compromise between scientific and statistical rigor on one hand, and the25

need for practical solutions to analyze nonlinear proxy timeseries on the other. A lim-
itation of the transform approach is that it is blind to the data-generating mechanism,
and may conflate various sources of nonlinearity.
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We thus stress that generic recipes are no substitute for a mechanistic understand-
ing, and ultimately the scientific interpretation of a proxy in terms of its climatic, eco-
logical, or geological controls should guide the choice of statistical methodology. The
example of Sect. 3 illustrates that explicitly modeling the mechanism giving rise to non-
normality yields much better estimates of the underlying climate. In the example con-5

sidered here, both the functional form and parameters of the mechanistic model were
assumed known, while in real applications the form would likely be an approximation
and the parameters would be estimated as part of a fully Bayesian analysis (Gelman
et al., 2004; Tingley and Huybers, 2010a, b; Tolwinski-Ward et al., 2013), together with
their associated uncertainties.10

In instances where many proxies are used as predictors of past climates, such as
climate reconstructions of the Common Era (e.g. Mann et al., 1998, 2008, 2009; Luter-
bacher et al., 2004; Moberg et al., 2005; Kaufman et al., 2009; Barriopedro et al.,
2011; Emile-Geay et al., 2013b; Tingley and Huybers, 2013), individually modeling
each proxy may prove challenging. Ideally, one would apply mechanistic forward mod-15

els to each proxy and combine them within a fully Bayesian inference procedure (Tin-
gley et al., 2012). Until a full suite of validated models and computationally-accessible
Bayesian tools are available, however, empirical transforms provide a simple expedi-
ent to ensure that all input series fit the assumption of linear regression from a multi-
variate normal model that underpin most climate field reconstructions. We stress that20

such transforms are not a panacea, however, as they do not address other modeling
challenges with proxy data, including time-uncertainty (Anchukaitis and Tierney, 2012;
Comboul et al., 2014), the heterogeneous distribution of observations in space and
time, spatial covariance modeling (Tingley and Huybers, 2010a; Guillot et al., 2015)
and the differing spatial and temporal averaging inherent to the proxies (Tingley et al.,25

2012; Hanhijärvi et al., 2013).
Finally, while this article has focused on nonlinear proxy records with power-law type

relationships, it is worth pointing out that a number of other valuable climate proxies
may deviate from linearity in other ways. In particular, records based on proportions
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(e.g. pollen counts, lithological fractions, fractions of certain faunal assemblages), be-
ing in the range [0,1], also involve a nonlinear transform of Gaussian inputs like tem-
perature, and therefore require specific inference tools. We will explore solutions to this
problem in future work.

6 Conclusions5

In this article we showed that nonlinearity fundamentally alters the information content
of climate proxies, and that it must be dealt with in some fashion, lest some erroneous
inferences be made. Though we advocate for mechanistic modeling whenever possible,
we showed that a simple empirical transform (ITS) can often be sufficient to remedy
many of the ills of nonlinearity, and recommend that paleoclimatologists working with10

nonlinear proxies apply such simple transforms to their records (as done, for instance,
by Rein, 2007). Matlab code for implementing the transform is available at http://www.
physics.usyd.edu.au/complex-systems/public-repository/normal.m.

Appendix A: Bayesian model derivation

Consider the proxy model of Eq. (1) and assume for simplicity that both c and ε are15

normally distributed, with c ∼N (µ,σ2) and ε ∼N (0,δ2). We are interested in inferring
c(t) from p(t), more specifically in finding the posterior probability distribution of climate
given the proxy, f (c|p). Using Bayes’ theorem, the posterior distribution f (c|p) can be
re-expressed as a function of the distribution of the proxy conditional on climate, f (p|c),
and the prior distribution of climate states, π(c):20

f (c|p) ∝ f (p|c)π(c). (A1)

In what follows, we set the prior on the climate states, π(c), to follow the same distribu-
tion as the process used to generate the climate itself. The prior is therefore informative
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and unbiased, and the posterior will be a mix of the information supplied by the prior
and information from the data. As the prior distribution and the distribution of climate
itself are the same in this illustrative example, in the absence of any information from
the data, the posterior distribution of the climate will converge to the distribution used
to generate climate, N (µ,σ2).5

On account of the thresholding behavior of the proxy, it is necessary to distinguish
two cases in calculating the posterior distribution of climate.

– Case 1:

p(t) = 0

f (c|p = 0) ∝ P(p = 0|c)π(c) ∝ P(c′ < 0|c)π(c)10

f (c|p = 0) ∝ P(c+ε < 0|c)π(c) ∝ P(ε < −c|c)π(c)

f (c|p = 0) ∝
−c∫
−∞

e−
ξ2

2δ2 dξ ·e−
(c−µ)2

2σ2 (A2)

With some rearrangements, the integral may be rewritten with the help of erfc, the
complementary error function1:

f (c|p = 0) ∝ erfc
(

c

δ
√

2

)
e−

(c−µ)2

2σ2 , (A3)15

and the normalization constant can then be calculated numerically. The posterior
is the product of two terms. The first gives the likelihood that p = 0 given any
value of c, while the second is the prior on c. Note that the likelihood increases
as c decreases, and in the absence of the prior, the uncertainty interval for c
would be unbounded from below. The prior distribution thus provides important20

regularization, and allows for uncertainty estimates with finite width when p = 0.

1erfc(x) = 2√
π

∫∞
x e
−u2

du
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– Case 2:

p(t) > 0

f (c|p > 0) ∝ P(p|p > 0,c)P(p > 0|c)π(c)

f (c|p > 0) ∝ P(p = αc′β |c)P(p > 0|c)π(c)

f (c|p > 0) ∝ P
(
ε = (p/α)

1
β −c|c

)
P(p > 0|c)π(c)5

f (c|p > 0) ∝ e
− 1

2

 (p/α)
1
β −c
δ

2

·P(c+ε > 0|c) ·e− 1
2 ( c−µσ )2

f (c|p > 0) ∝ e
− 1

2

 (p/α)
1
β −c
δ

2

− 1
2 ( c−µσ )2

·P(ε > −c|c)

f (c|p > 0) ∝ e−
1
2

(
c−µ′
σ′
)2

·
∞∫
−c

e−
ξ2

2δ2 dξ

f (c|p > 0) ∝ e−
1
2

(
c−µ′
σ′
)2

·erfc
(
−c
δ
√

2

)
(A4)

where10

µ′ =
µδ2 + (p/α)

1
β σ2

δ2 +σ2
and σ′2 =

δ2σ2

δ2 +σ2
(A5)

The posterior is once more the product of two terms. The first is a normal density
that combines the information from the prior and the likelihood of the observed
value of p. As is common in such settings (e.g Gelman et al., 2004, chap 2),
the mean of this normal distribution is an inverse variance-weighted mean of the15

prior mean and the transformed proxy value, while the variance is the harmonic
mean of the prior and noise variances. The second term in the posterior gives
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the likelihood of observing a non-zero value of p, conditional on the value of the
climate.

Examples of the posterior distribution are shown in Fig. 12, for different relative val-
ues of δ and σ. In the limit of no noise (δ→ 0), the erfc terms converge to step func-
tions at zero, and ensure that in the p = 0 case, the distribution is π(c) for c ≤ 0 and5

0 otherwise – that is, the negative half of a scaled normal distribution. Similarly, in the

p > 0 case, the posterior distribution converges to a delta function centered at (p/α)
1
β ,

as the variance in Eq. (A5) is zero. In the case δ = σ, the distributions for both p > 0
and p = 0 are much flatter and display substantial overlap, indicating the influence of
the informative prior. Finally, in the limit as δ→∞, the posterior converges to the prior10

π(c) and the posterior distribution is the same in both the p > 0 and p = 0 cases.

Appendix B: Alternate prior choices

The choice of prior affects both point estimates and uncertainty intervals, and is the
dominant control on the inference in data-poor situations – such as the p = 0 case for
the example discussed in the text. Here we explore, both qualitatively and quantitatively,15

the influence of the prior standard deviation, σp, for the climate process on the inference
of climate conditional on proxy values.

To build intuition into the role of the prior, consider the case where σp→ 0, corre-
sponding to perfect prior information. Provided that δ > 0, the posteriors for both p = 0
and p > 0 then converge to delta-functions at µ, and the data has no influence on the20

posterior. In contrast, as σp→∞, corresponding to an uninformative prior, the pos-
terior for p > 0 has the same form as for finite σp, but now the mean and variance

(Eq. A5) are, respectively, (p/α)(1/β) and δ2. For the p = 0 case, Eq. (A3) then con-
verges to something proportional to erfc, which is not a proper probability distribution
as its integral on the real line is infinite. An informative prior therefore plays two roles:25

providing regularization when p = 0 so that uncertainty widths are finite, and shrinking
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the posterior mean towards the prior mean when p > 0, while likewise reducing the
posterior variance.

Table B1 presents the same statistics as Table 1, but for the 3 following situations:
(i) Bayesian posterior distribution with σp = σ (true standard deviation), (ii) DBL: σp =
2×σ, (iii) HLF: σp =

1
2 ×σ. The wider (DBL) prior results in substantial negative bias for5

p = 0, as the lower tail of the posterior expands towards more negative values. For the
p > 0 case, the wider prior results in a positive bias, as there is more posterior mass
farther from zero and insufficient shrinkage towards the true climate mean. With more
weight given to the observed value of p, rather than the prior, the posterior approaches

a normal with mean (p/α)(1/β) and variance δ2 – despite the fact that a particularly10

large observed p is more likely due to the error term than the climate. The situation is
reversed for the HLF prior, with positive bias when p = 0 and negative bias when p > 0.

Although the uncertainty intervals are wider under the DBL as compared with the
CTL prior, the coverage rates are largely unchanged between the two. There is a trade
off in this case, as the wider prior results in an increased probability of small magni-15

tude values of c not being covered by the intervals, and a decreased probability that
large magnitude values of c fall outside the intervals. For the HLF prior, the uncertainty
intervals are narrower and coverage rates lower as compared with the CTL prior. For
both the DBL and HLF, the interval scores are larger than for CTL, indicating that, of
the three priors, the latter results in the best compromise between coverage rate and20

interval width.
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Table 1. Inference diagnostics derived from 10 000 realizations of the climate process c(t),
for each of the three inference approaches, with δ = 0.5. CI width is the width of the 95%
uncertainty intervals produced by each method (see Fig. 5) averaged over the 300 time points.
The coverage rate should be compared to its nominal value of 95 %. The interval score should
be as small as possible. The bias is defined as the difference between the estimated and true
climate, averaged over the entire interval. All statistics have been stratified according the sign of
p to account for the varying amounts of uncertainty in each case. For the top 3 rows, we report
the mean and standard error (s.e.) of each distribution, obtained from the 10 000 realizations.
The variance ratio statistics pertain to the distributions plotted in Fig. 6; variance ratios for p = 0
are not reported because all methods produce constant estimates in that case.

Quantity Statistic RAW ITS BPM
p = 0 p > 0 total p = 0 p > 0 total p = 0 p > 0 total

CI width (◦C) mean 2.71 2.07 2.39 2.71 1.84 2.28 2.74 1.60 2.17
s.e. 0.33 0.21 0.21 0.33 0.17 0.20 0.00 0.01 0.08

Coverage Rate mean 0.94 0.94 0.94 0.94 0.94 0.94 0.95 0.91 0.93
s.e. 0.05 0.04 0.03 0.05 0.04 0.03 0.03 0.04 0.02

Interval Score mean 03.51 2.99 3.27 3.51 2.34 2.94 3.27 2.32 2.79
s.e. 0.82 1.33 0.81 0.82 0.40 0.49 0.50 0.38 0.34

Bias (◦C) mean −0.00 +0.02 +0.01 −0.00 −0.01 −0.00 −0.01 +0.11 +0.05
s.e. 0.19 0.12 0.12 0.19 0.11 0.12 0.14 0.07 0.08

Variance ratio mode – 0.40 – – 0.96 – – 0.96 –
P(R > 1.5) – 0.29 – – 0.07 – – 0.07 –
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Table 2. Significance of variance changes across the 3150 BCE boundary (grey line in Fig. 8)
in Laguna Pallcacocha red color intensity. The table lists P values for a block bootstrap test
(25 year blocks, N = 2000 realizations) of the null hypothesis that the variance jump across the
boundary could have arisen from chance alone. The test is deemed significant at the α level
whenever P ≤ α, and is conducted on time segments of variable length, to identify how long an
interval is needed to detect a shift in variance. Results are virtually identical with 10 year blocks.

Statistic Segment Length (years) 200 400 800 1000 1400 1800 3600

RAW variance ratio 5.082 3.277 2.411 2.048 1.822 2.288 2.501
P value < 10−3 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

ITS variance ratio 1.275 1.182 1.155 1.304 1.359 1.360 1.797
P value 0.199 0.218 0.118 0.012 0.003 < 10−3 < 10−3
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Table B1. Inference diagnostics derived from 1000 realizations of the climate process c(t), for
3 values of the prior standard deviation σp, with δ = 0.5. CTL: σp = σ (true standard deviation);
DBL: σp = 2×σ; HLF: σp =

1
2 ×σ.

Quantity Statistic CTL DBL HLF
p = 0 p > 0 total p = 0 p > 0 total p = 0 p > 0 total

CI width mean 2.74 1.60 2.17 4.86 1.73 3.29 1.62 1.28 1.45
s.e. 0.00 0.01 0.08 0.00 0.02 0.23 0.00 0.01 0.02

Coverage Rate mean 0.95 0.91 0.93 0.96 0.90 0.93 0.72 0.77 0.74
s.e. 0.03 0.04 0.02 0.03 0.04 0.02 0.07 0.06 0.05

Interval score mean 3.29 2.32 2.80 5.24 2.52 3.86 6.99 3.65 5.39
s.e. 0.52 0.39 0.35 0.30 0.41 0.31 2.36 0.98 1.39

Bias mean −0.01 +0.11 +0.05 −0.84 +0.24 −0.30 +0.42 −0.17 +0.13
s.e. 0.14 0.07 0.08 0.14 0.07 0.07 0.14 0.09 0.12

Variance ratio mode – 0.96 – – 0.96 – – 0.96 –
P(R > 1.5) – 0.07 – – 0.07 – – 0.06 –
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β
 if c’(t)>0, 0 otherwise

Figure 1. A nonlinear recorder of ENSO activity. Solid red: December–January–February av-
erage of the NINO3.4 index from the ERSSTv3 dataset (Smith et al., 2008), standardized to
Z scores; dashed red: standardized NINO3.4 with additive N (0,0.25) noise; gray: the noisy
NINO3.4 signal transformed according to Eq. (1), with α = 1 and β = 3.
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c(t) = NINO3.4 (DJF)

c’(t) = c(t) + ε

z(t) = ITS(p(t))

Figure 2. Correcting for non-normality using inverse transform sampling. Solid red: the nor-
malized NINO3.4 index; dashed red: standardized NINO3.4 with additive N (0,0.25) noise;
gray: the transformed version of the pseudo proxy depicted in Fig. 1. Because the distri-
bution of p(t) has a mass point at 0, we compute the transform only on those time points
where p(t) > 0, leaving it 0 otherwise. Code for implementing the transform is available at
http://www.physics.usyd.edu.au/complex-systems/public-repository/normal.m.
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Figure 3. Distributions of estimated NINO3.4 variance ratios between 1900–1949 and 1950–
1999, using positive proxy excursions. Light blue: distribution of ratios from 10 000 samples of
p(t) derived according to Eq. (1) with noise variance set to 0.25 (compare with the dark gray
curve in Fig. 1); dark blue: distribution of ratios estimated from z(t), the empirical transform of
each sample of p(t) (compare with the dark gray curve in Fig. 2); green: distribution of ratios
estimated from the functional transform ((p/α)β). In each case, the median is indicated with
a dashed vertical line of the same color, while the ratio estimated from the original NINO3.4
series is indicated in red.

2800

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/11/2763/2015/cpd-11-2763-2015-print.pdf
http://www.clim-past-discuss.net/11/2763/2015/cpd-11-2763-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
11, 2763–2809, 2015

Climate variability
from nonlinear

proxies

J. Emile-Geay and
M. P. Tingley

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

0 50 100 150 200 250 300

-2

0

2

4

6

8

10

12

14

a) Regression on raw proxy values, α = 1.0, β = 3.0, γ = 0.70

C
lim

at
e 

(K
)

Time

 

 

Climate target c(t)
Climate + error c'(t), δ = 0.5 × σ
Bayesian posterior Mean
Raw samples

0 50 100 150 200 250 300

-2

0

2

4

6

8

10

12

14

b) Regression on transformed proxy values, same parameters

C
lim

at
e 

(K
)

Time

 

 

Climate target c(t)
Climate + error c'(t), δ = 0.5 × σ
Bayesian posterior Mean
Inverse Transform Samples

Figure 4. Inferences on simulated c(t) using three different methods. (a) Inference using re-
gression on raw proxy values (blue) and the Bayesian model (gray). (b) Inference using re-
gression on transformed proxy values (blue) as well as the Bayesian model (gray). In both
panels, c(t) and c′(t) are shown in solid and dashed red; blue shading represent 95 % frequen-
tist prediction intervals; and gray intervals represent pointwise 95 % credible intervals from the
Bayesian posterior distribution (see, for example, Tingley and Huybers, 2013).
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Figure 5. Residuals (differences between estimated and true values of the climate) as a func-
tion of the estimated climate. The three inference methods (columns) are compared for three
values of δ (rows). Blue circles: residuals when p > 0; boxplots: the distribution of residuals
for p = 0. Whiskers extend to the the 2.5 and 97.5 % quantiles; boxes denote the 25 and 75 %
quantiles; circles mark the median. The middle row corresponds to the simulated proxy plotted
in Fig. 4.
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Figure 6. Distribution of variances ratios between the calibration and validation intervals, as
inferred from each method and normalized by the same ratio calculated from the actual real-
ization of c(t). Cyan: raw regression; blue: regression on transformed pseudo-proxies; green:
Bayesian inversion. The black dashed line denotes unity, which, due to the normalization, is
the result under perfect inference for each realization of c(t). Distributions are based on 10 000
realizations of c(t) with δ = 0.5.
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Figure 7. Raw and transformed time series of the Laguna Pallcacocha record (Moy et al.,
2002). (a) Raw time series, interpolated at 2 years intervals; (b) empirical histogram (bars) and
parametric fit to a GEV distribution with parameters (kP ,σP ,µP ) = (0.07,15.59,72.13) (red line);
(c) transformed time series with λ = 0.31; (d) empirical histogram of the transformed timeseries
(bars) and parametric fit to a standard normal (red line).
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Figure 8. Variances calculated over non-overlapping 100 year segments of the Pallcacocha red
color intensity record (thick cyan line) and after applying the empirical transform (thin blue line).
Both series were standardized prior to analysis.
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Figure 9. Wavelet Analysis of the Laguna Pallcacocha record (Moy et al., 2002). (a) Morlet
wavelet coefficients for raw values of the red color intensity series, interpolated at 2 years in-
tervals; (b) global wavelet spectrum (black), with the AR(1) benchmark plotted in gray. (c and
d) As in (a and b) but for the transformed time series. Colorbars are omitted since units are
arbitrary.
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Figure 10. Raw and transformed time series of Lake Challa varve thickness (Wolff et al., 2011).
(a) Raw time series, interpolated at yearly intervals; (b) empirical histogram (bars) and para-
metric fit to a log-normal distribution (cyan line); (c) transformed time series; (d) empirical
histogram of the transformed timeseries (bars) and parametric fit to a standard normal (blue
line).
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b) Lake Challa vs Pallcacocha, transform

-1000 -500 0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
c) Moving standard deviation, 40y windows, raw

St
d 

de
v

 

 
Challa
Pallcacocha

-1000 -500 0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
d) Moving standard deviation, 40y windows, transform

St
d 

de
v

 

 
Challa
Pallcacocha

Figure 11. Comparison of Lake Challa and Laguna Pallcacocha records. Top row: raw (un-
transformed) records. Bottom row: transformed records. Left: timeseries interpolated at bian-
nual resolution. Right: standard deviation on sliding 40-year windows.
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Figure 12. Posterior probability density functions of climate, according to Eqs. (6) and (7), with
µ = 0, σ = 1, α = 1, β = 3 and the noise level δ taking on the values [0.1,0.5,1]×σ. Solid and
dashed lines lines correspond, respectively, to proxy values of p = 2.5 and p = 0. The black
vertical line marks the point (p/α)

1
β , the true value of c in the absence of noise.

2809

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/11/2763/2015/cpd-11-2763-2015-print.pdf
http://www.clim-past-discuss.net/11/2763/2015/cpd-11-2763-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

	Introduction
	Nonlinearity in climate proxies
	A simple proxy model
	Coping with nonlinearity
	Application to variance changes

	Inference from nonlinear proxies: three approaches
	Three approaches to inference
	Results

	Applications to published records
	Laguna Pallcacocha
	Lake Challa

	Discussion
	Conclusions
	Appendix A: Bayesian model derivation
	Appendix B: Alternate prior choices

